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1. Introduction 
 

If a piece of string is tied and joined at its ends a mathematical knot is formed. In most cases 

the knot cannot be untied unless the ends are separated again. The field of mathematical knots 

deals with questions such as whether a knot can be untied or not or whether two knots are the 

same or not. A lot of efforts have been made in order to answer these questions. [1,2,3] In this 

note we will discuss how to represent prime knots as planar connected graphs [4]. 
 

2. The trefoil knot 
 

The simplest nontrivial knot is the trefoil knot, in which, in its simplest form, the string crosses 

itself three times. Different versions of this knot are shown in figure 1. Knot 1a can be 

transformed to coincide with knot 1c, and the knots 1b and 1d have the same relationship. Knot 

1b, which is the mirror image of knot 1a, cannot be transformed to coincide with knots 1a or 

1c. The trefoil knot has alternating crossings, since, if we follow the string around, the crossings 

alternate between over- and under-crossings. The trefoil knot is denoted 31 [5]. The knot images 

shown in this and other figures are drawn using KnotPlot [6]. 

 

3. The trefoil graphs 
 

In figure 2 the trefoil knot is deformed to 

make a connected graph with three nodes and 

three edges. Firstly the three crossings are 

squeezed together to make elongated X-es 

and the rest of the string is rounded off to 

circles. Finally the X-es are replaced by 

edges to form the graph. 

In figure 3 one strand is lifted over the knot 

which is then deformed into the form at the 

lower left. Again the crossings are squeezed 

together to make elongated X-es, but this 

time the X-es are the mirror images of the X-

es in figure 2. In this case we can let the 

crossing be indicated by a red edge in the 

final graph. Black and red edges are said to 

have different parities. 

 

Figure 1: The trefoil knot 

 

 

 

Figure 2: The trefoil graph I 

 

 

 

Figure 3: The trefoil graph II 

 

 



A convenient way to construct the knot graphs is to shade the different regions in the graph as 

in figure 4. Here all regions that are connected only through crossings are shaded and all other 

regions are left unshaded. If we regard the outside of the knot as one region, a knot with n 

crossings will have n+2 regions. Each representation of a knot will have two different shadings 

as indicated by the first two panels in figure 4.When moving from one shaded region to another 

through a crossing, the string piece coming from the left crosses over the string piece coming 

from the right (as in the first panel), the crossing is considered to be the one depicted in figure 

2 and gives a black edge in the graph. If instead the string piece coming from the right crosses 

over the string piece coming from the left (as in the second and third panels) the crossing 

depicted in figure 3 will be obtained giving rise to a 

red edge in the graph. It should now be obvious that 

the first panel corresponds to the graph in figure 2, 

and that the shadings of the two other panels both will 

result in the graph in figure 3. 

There are consequently four different graphs that can 

represent the trefoil knot. This is true for most graphs 

representing knots, but for some knots, some of the 

graphs will be the same. In figure 5 the two top graphs 

both correspond to knot a in figure 1, and the bottom 

two graphs both correspond to knot b. We call the two 

black graphs in figure 5 twin-graphs. 

In what follows, unless otherwise stated, whenever 

we study alternating knots, corresponding to graphs 

with just one colour, we will only consider the graphs 

with black edges.  

A further simplification of a graph is obtained when 

two nodes are connected by more than one edge as 

shown in figure 6a. A number beside an edge 

indicates the number of connections between the 

nodes. If a number is missing a single connection is 

intended. In the following we denote edges in a graph 

as bundles, and a bundle can carry any positive 

number indicating the number of connections 

between the two associated nodes. A bundle can also 

carry a negative number. This corresponds to a red-coloured bundle with the same positive 

 

Figure 4: Shading of the trefoil knot 

 

 

 

Figure 5: 4 graphs representing the trefoil 

knot 

 

 

Figure 6a: Simplifying a graph 

 

 

Figure 6b: Negative bundles 

 

 



number (see figure 6b). In the following we will predominately use the red colour to indicate 

negative bundles. 

 

4. The figure-8 knot 
 

The trefoil knot is the only knot that can be 

transformed so that there are only three crossings. 

This is called the minimal crossing number of a knot. 

An alternating knot is always in its minimal state 

unless there are loops or twists that can easily be 

removed (c.f. the R1-move below).The only knot with 

a minimal crossing number equal to 4 is the figure-8 

knot shown in figure 7 together with its corresponding 

graph. When this knot is shaded in the same way as 

was done for the trefoil knot, both resulting graphs 

will look the same (an amphicheiral knot). The figure-8 knot is denoted 41 and its graph is its 

own twin. 

 

5. Transforming knots and graphs by Reidemeister moves 

 
There are many ways to transform knots into new 

projections. All such transformations can be 

achieved by a sequence of so called Reidemeister 

moves [7]. The three Reidemeister moves are 

shown in figure 8. The first Reidemeister move, 

R1, shows that a simple loop can be created or 

deleted at will. The second Reidemeister move, 

R2, shows that one of two strands besides each 

other can be lifted on top of the other. The third 

Reidemeister move, R3, shows that a third strand 

can be placed on either side of the crossing of two 

others. 
The Reidemeister moves can easily be adapted to 

corresponding moves on graphs. As a consequence 

of the two ways to shade a knot each move can 

appear in two variations. The last Reidemeister 

move will however result in the same subgraphs. 

Figure 9 summarises the corresponding moves for 

graphs. The R1-move results in removing or 

adding a loop that connects a node to itself, while 

leaving the rest of the graph intact. The same move 

can also result in removing or adding a node that 

only has one connection to the rest of the graph.  

The R2-move results in removing or adding two 

edges of different parities that connect the same 

two nodes. It will also merge two nodes, both 

connected to the same third node but with different 

parities. The node in the middle may not be 

connected to other nodes in the graph. 

 

Figure 7: The figure-8 knot and its graph 

 

 

 

Figure 9: Reidemeister moves on graphs 

 

 

 

Figure 8: Reidemeister moves 

 

 



The R3-move results in removing or adding a node in a triangular region of a graph as indicated 

in the figure. The three edges involved in the move cannot be of the same parity.  

The broken edges in figure 9 indicate that the node may, but not necessary, be connected to 

other nodes in the graph. Reidemeister moves can be combined to more complex moves. Figure 

10 shows how a loop can move from one strand to the other. The corresponding graph moves 

are also given. These moves can be generalised in different ways and one way is illustrated in 

figure 11. 

The moves in figure 11 shows that a single edge followed by a 

multi-valued edge always can be interchanged, or in the other 

case, a sequence of edges can be moved from one side of a single 

edge to the other.  

Figure 12 gives two examples of graphs where the jumping loop 

move is applied, thereby showing that the knots are the same, 

although in different projections.  The two knots represented by 

graphs in this figure are denoted 75 and 76, respectively (see 

appendix A). 

In bi-coloured graphs there are many complex moves that can 

reduce the number of edges in a graph, thereby decreasing the 

number of crossings of the corresponding knot. One such move 

is shown in figure 13 where a loop is untwisted. These moves 

 

Figure 11: Generalisations 

of the jumping loop 

 

 

 

Figure 10: Jumping loop 

 

 

 

Figure 12: 2 knots represented 

by different graphs 

 

 

 

Figure 13: Untwisted loop 

 

 



can also be generalised in 

various ways and the moves 

given at the lower right of the 

figure are examples. All 

these moves reduce the 

number of edges by one, and 

no graph containing any of 

the subgraphs to the left can 

represent knots in a minimal 

crossing-number projection. 

Figure 14 gives a few more moves that reduces the 

number of edges by one.  Repeated usage of these 

and other moves give rise to the generalisation seen 

in figure 15. Here an arbitrary subgraph G can be 

interchanged with a single edge. Note that in the top 

part the subgraph is flipped over vertically and in 

the lower part the subgraph is flipped in the 

horizontal direction, as indicated by the orientation 

of the Gs. In both cases the parities of all edges in 

G are conserved. These moves are normally 

referred to as ‘flypes’. 

Two multi-valued edges, with the same parity, 

connected to a third node cannot be interchanged. 

In the subgraph, to the left in figure 16a, the double- 

and triple-edges cannot be interchanged. If the 

subgraph is bi-coloured (top right) the graph can be 

transformed but the number of edges cannot be 

decreased. In the subgraph at the lower middle the red edges cannot be moved on top of the 

black ones, but can be transformed in other ways. A few more useful moves are shown in fig 

16b. 

 

6. Bridges 

 
In figure 17a we have a graph in which two nodes are connected to each other via three arbitrary 

subgraphs. We say that the two nodes are connected by three bridges. In figure 17b one of the 

nodes is expanded and moved over the whole graph as in figure 17c. Since the rim of a circular 

node correspond to a string piece in a knot this is the same procedure that was applied to the 

trefoil knot in figure 3. In figure 17d the edge between G1 and the engulfing node is moved 

contraclockwise from right to left followed by the same movement of G2. The subgraph G3 

follows the same procedure but this time the movement goes clockwise. In figure 17e the 

 

Figure 14: Edge-reducing moves 

 

 

 

Figure 16a: A few subgraphs 

 

 

 

Figure 15: Generalisations  

 

 

 

Figure 16b: Some other useful moves 

 

 



expanded node is flipped back to the left and reduced to its original size (figure 17f). The graph 

is rotated to become the graph given in figure 17g. If the two graphs 17a and 17g now are 

compared, it is obvious that any cyclic permutation of the three bridges are allowed. Non-cyclic 

permutations will produce graphs that don’t correspond to the same knot. The parities of all 

edges in the graph are conserved. Note that the edges connecting a node with a sub-graph may 

represent several edges connected to different nodes in the sub-graph. This procedure can be 

generalised to any number of bridges as long as the permutations are cyclic. The two graphs 

shown in figure 17h are thus both representations of the knot 85. 

 

7. Non-alternating knots 
 

In appendix A all alternating knots having minimal crossing-numbers 8 or less are given 

together with their corresponding graphs. [8] There are one knot having 3 crossings, one with 

4, two with 5, three with 6, seven with 7 and eighteen knots having 8 crossings. If we go through 

the corresponding graphs we will find that all the graphs corresponding to knots with 7 or fewer 

crossings cannot be bi-coloured without having the possibility to reduce one or more edges. 

The same is true for most of the graphs corresponding to knots with 8 crossings. The only knots 

with could produce bi-coloured graphs are the six knots 85, 810, 815, 816, 817 and 818. Figure 

18 summarises all possible bi-colourings of the graphs corresponding to these 6 knots. There 

are all together 17 possible bi-coloured graphs obtained not counting twin-graphs. Those 17 

possibilities only correspond to 3 different knots; 819, 820 and 821. These are the only 3 non-

alternating knots with minimal crossing-number 8. For instance the graph denoted 819(5) 

corresponds to knot 819 in an 85 projection. The two graphs 820(16’) and 820(16’’) are different 

colourings leading to the same knot 820 in an 816 projection. Figure 19 shows how 819(5) can be 

transformed by an R3-move to 819(16) and how 819(16) similarly becomes 819(18). 
  

 

Figure 17: Bridges 

 

 



 

 

Figure 18: Colourable graphs with 8 edges 

 

 

 

Figure 19: Transformations of graphs corresponding to knot 819. 

 

 



8. Knots with 9 crossings 

 
In appendix C we show all 49 knots having a minimal crossing-number of 9. Since the total 

number of regions for a knot with n crossings is n+2, which corresponds to the total number of 

nodes in the two twin-graphs, it will always be possible to find a graph with m nodes where m 

≤ n/2 +1. For knots with 9 crossings this means that a graph with 5 or less nodes must exist. Its 

twin-graph then has to have at least 6 nodes to make a total of 11. Only the graphs with the 

smallest number of nodes are given in appendix C. Out of the 49 knots 41 are alternating and 8 

non-alternating (942 – 949). For the non-alternating knots only one possible graph is given 

chosen randomly out of the many possibilities (c.f. non-alternating knots with 8 crossings). 

All graphs in appendix C have twin-graphs with at least 6 nodes. It is left to the reader to work 

them out. 

 

9. Prime knots and composite knots 
 

All knots regarded so far are prime knots. 

Prime knots can be added together to make 

composite knots. The simplest composite knots 

are achieved by adding two trefoil knots either 

two with the same parity or two with different 

parities. Figure 20 shows the resulting knots 

and some corresponding graphs. The knot to 

the left is called the Granny knot and the one to 

the right is called the Square knot. [9] If a graph 

can be cut into two halves by cutting through a 

single node, as indicated in the bottom of the 

figure, the corresponding knot is always a composite knot. Any two or more prime knots can 

be combined in similar ways to produce composite knots. Graphs corresponding to composite 

knots can be treated in essentially the same ways as those corresponding to prime knots. 

 

10. Links  

 
Not all planar, connected graphs will correspond to knots. Several rings of strings which are 

entangled with each other are called links [1,2,3]. A knot is just a link made up of one string 

 

Figure 20: The Granny knot and the Square knot 

 

 

 

Figure 21: Some links 

 

 



ring. Figure 21 gives a few 

examples of links together with 

their corresponding graphs. The 

link to the left is called the Hopf 

link, the link to the right is 

called the Borromean rings and 

the link in the middle is 

sometimes called Solomon’s 

knot. [9] 
Sometimes it is necessary to 

consider the orientation of the 

links, e.g. the Hopf link can be 

divided into a pair. In figure 22a the Hopf pair is 

shown together with its corresponding graphs. The 

link to the right cannot be transformed into the link 

to the left if the orientation is to be conserved. 

In figures 2 and 3 we introduced elongated X-es and 

how they became black and red edges in the 

corresponding graphs. When we consider oriented 

knots and links each edge or bundle has to be given 

a sign to differentiate cases where the two legs in an 

X points in the same direction or not. The four 

different cases are depicted in figure 22b. Note that 

the signs do thus not indicate the parities of the 

edges (indicated by colour) but the orientation of how the strands cross. 

 

11. Planar connected graphs 

 
Up to now we have seen that knots can be represented with planar connected graphs. If we 

consider prime knots in their minimal crossing-number projection, each node in a graph has to 

have at least 2 connections (with exception for the graph in figure 6 describing the trefoil knot). 

The graphs are said to have a minimal degree of 2 [4]. There are one such graph with 3 nodes, 

three with 4 nodes and 10 with 5 nodes. All these graphs are shown in figure 23, where the 

graphs are denoted with the number of nodes and edges. Graph 5:6c will lead to composite 

knots, whereas the rest of the graphs are all used to represent knots in appendices A and C. 
In figure 24 the two graphs to the left both correspond to knot 928 (twin-graphs to the graph 

given in appendix C). The blue part can be attached to the rest of the graph in two ways. The 

two graphs in the middle will, however, correspond to different knots. Those graphs correspond 

to knots 11a47 and 11a44, respectively, using the Hoste-Thistlethwaite notation [8].  This 

illustrates that all types of planar, connected graphs with a minimal degree of 2 are needed to 

describe some knots. 

 

 

Figure 22a: The Hopf pair 

 

 

 

Figure 22b: Oriented crossings 

 

 



The two graphs to the right are different projections 

of the same graph, but the corresponding knots are 

different. This illustrates that different forms of the 

same graph may correspond to different knots. 

Those two graphs correspond to knots 11a57 and 

11a231, respectively. Here the four bridges are 

permuted in a non-cyclic way (c.f. section 6). 
 

12. From graph to knot 

 
So far we have only considered how knots can be 

represented by graphs. Can this process be 

reversed? Yes it can. Figure 25 shows how a graph 

representing a projection of the knot 924 can be 

transformed into the corresponding knot. Each edge in the graph is marked with elongates X-

es, their number corresponding to the multiplicity of each edge. Since all edges here have the 

 

Figure 23: Planar connected graphs with a minimal degree of 2 

 

 

 

Figure 24: A few graphs 

 

 



same parity, all X-es will be the same (c.f. section 3). Subsequently the X-es are connected 

following the outline of the original graph, making sure that none of the edges of the original 

graph is crossed. The five nodes of the graph can now easily be recognised as five regions of 

the knot. Finally the corners are rounded of and an image of the knot is produced in the 

projection indicated by the original graph. Any graph can be treated in the same way to produce 

the corresponding knot. 

 

13. A few practical demonstrations  

 

In figure 26 we see two different knot projections 

together with their corresponding graphs. What can be 

deduced about the two knots? In figure 27 the nodes in 

the graph to the left of figure 26 are labelled with letters 

so that the transformations can be followed more easily. 

First we blow the graph up showing that the nodes c and 

d are connected via three bridges. We make a bridge 

move as in figure 17 and move the lower bridge to the 

top. Next we take the bridge with the 

nodes a and b and move it below the 

single edge cd according to the move 

discussed in the context of figure 15, 

remembering to flip this bridge 

horizontally. Finally the nodes b and e are 

moved to the outside of the graph (as 

indicated in figure 10). After rotating the 

graph 180 we have arrived at the graph 

to the right in figure 26, thus showing that 

the two knots are different projections of 

the same knot, namely knot 11a14. 

 

Figure 25: From graph to knot for a projection of the knot 924. 

 

 

 

Figure 27: The two knots are the same 

 

 

 

Figure 26: Two knots and their graphs 

 

 



Let’s now analyse the knot in figure 28 given together with the corresponding graph. Again the 

graph is labelled by letters to facilitate references. The knot has 13 crossings and the graph has 

13 edges. We start by removing the i-node with an R3-move, which is followed by a new R3-

 

Figure 28: transforming a graph 

 

 



move removing the h-node. The two edges between the f- and c-nodes can now be eliminated 

by an R2-move. We are now left with 11 edges. Next we remove the g-node followed by the f-

node by two R3-moves. The red edge between the e- and d-nodes can now be moved to the 

other side of the graph by a bridge move. The two edges connecting the e- and d-nodes can now 

be eliminated by an R2-move, reducing the number of edges to 9. We now move the b-node 

over the edge connecting the c- and a-nodes, and using one of the edge-reducing moves in figure 

13, the e-node is eliminated. We are now left with 8 edges. One red and one black edge between 

the c- and a-nodes are eliminated bringing the number of edges down to 6. 

Now we move the b-node back to the outside of the graph and through an R3-move we insert a 

new node e. The b-node can now be removed together with its edge by an R1-move, reducing 

the number of edges to 5. Now the c-node can be removed using one of the edge-reducing 

moves in figure 13 followed by the same move removing the d-node. The only thing remaining 

now are two nodes connected by three edges; two black and one red. Two of the edges are 

removed by an R2-move and finally the e-node is chopped off by an R1-move. 

We are no left with a single unconnected node, which corresponds to the unknot, normally 

denoted 01, showing that the original knot wasn’t knotted at all. 

 

14. The Perko pair 
 

All minimal projections of non-

alternating prime knots with up to 10 

crossings can rather effortless be found 

using Reidemeister moves and the useful 

moves given in figure 16. There is 

however one exception to this, namely 

the knot 10161. All minimal projections of 

this knot are given in graph form in figure 

29. The number below each graph 

indicates the corresponding uni-coloured 

knot graph and the graphs with 6 nodes 

are given together with their twin graphs. 

When the twins are the same an asterisk 

is added to the number. The projections 

are divided into two groups, and although 

it is trivial to transform one projection to 

another one within the same group, it is 

nontrivial to make transformations 

between the two groups. Thus the two 

groups were for a long time considered as 

two distinct knots. In 1973 Ken Perko 

showed that the two knots actually were 

different projections of the same knot [10]. Figure 30 shows how the projection 10161(109) is 

transformed into the projection 10161(107) using a sequence of R1- and R3-moves, thereby 

corroborating Perko’s finding. 

 

 

 

 

 

 

 

Figure 29: Projections of the Perko knot 

 

 



 

15. The complexity of non-alternating 

prime knots 

 
In previous sections we have studied graphs 

corresponding to both alternating and non-

alternating prime knots. It is seen that alternating 

knots in their minimal crossing projections are 

rather straightforwardly described by graphs with 

only few variations. When we consider non-

alternating knots the number of variations, 

corresponding to different projections can be very 

large. Figure 31 shows graphs corresponding to 

different minimal crossing projections of the knot 

11n38. Note that to each of those graphs there is 

a twin-graph with 7 or more nodes (not shown). 

The numbers within brackets below each graph 

refer to the corresponding alternating knot graph. 

 

16. The HOMFLY-polynomial 

 
There are many different ways to define 

invariants for knots which will be the same 

independent of the specific projection of a knot 

[11].  

One of the most successful invariants is the 

HOMFLY-polynomial [12]. The HOMFLY-

polynomials exist in slightly different versions 

 

Figure 30: Transformation of 10161(109) into 10161(107) 

 

 

 

Figure 30: Various forms of 11n38 

 

 



where the version used here is obtained by the following rules: 

 

1. 𝑃(unknot) = 1 in all its projections 

 

2. 𝑎𝑃(𝐿+) − 𝑎−1𝑃(𝐿−) = 𝑧𝑃(𝐿0) 
 

Here L+, L− and L0 refer to local changes of a knot projection 

keeping the rest of the projection intact. The changes are 

illustrated in figure 31a. These changes have their counterparts in 

graphs, but here we have to differentiate between two cases; +-

edges and –-edges as defined in section 10 (fig. 22b). This is 

shown in figure 32b. Note that if the edge has positive (negative) 

orientation, two nodes are fused (separated) with the L0-change. 

Using the rules repeatedly gives the HOMFLY-polynomial for the 

trefoil knot  

 

𝑃(trefoil) = 𝑧2𝑎−2 + 2𝑎−2 − 𝑎−4  
 

and its mirror knot is obtained by substituting 𝑎 by 𝑎−1.  

The figure-8 knot has the polynomial 

 

𝑃(figure-8) = −𝑧2 + 𝑎2 − 1 + 𝑎−2  
 

Here the substitution will produce the same expression indicating 

that that the two mirror images are the same. 

Some types of knots can be given general expressions for their 

HOMFLY-polynomials. All knots of the form in figure 32 are 

given by 

 

𝑃 = ℱ(𝑛) ≡ 𝑎−4𝒢(𝑛 + 2) − 𝒢(𝑛)  
 

where 

 

𝒢(𝑛) ≡ (−𝑧)𝑛−1𝑎𝑛+1 ∑ (
𝑛 − 𝑘 − 1

𝑘 − 1
) 𝑧−2𝑘⌊𝑛

2⁄ ⌋

𝑘=0      for 𝑛 ≥ 0  

and 𝒢(𝑛) ≡ 𝑎2𝑛−2𝒢(−𝑛 + 2)     for 𝑛 < 0  

This expression is also valid for 2-component links when n is 

even. 

As an example, for 𝑛 = 11 we obtain  

 

𝑃 = 𝑧10𝑎10 + 𝑧8(10𝑎10 − 𝑎12) + 𝑧6(36𝑎10 − 8𝑎12)  
+ 𝑧4(56𝑎10 − 21𝑎12) + 𝑧2(35𝑎10 − 20𝑎12) + (6𝑎10 − 5𝑎12)  
 

Three-bundle knots or triangular knots can be divided into two types as illustrated in figure 

33. The general expression for type A is 
 

𝑃 = 𝒯(𝑛1, 𝑛2, 𝑛3) ≡ 𝑎−𝑛1−𝑛2 + 𝑎−𝑛1−𝑛3 + 𝑎−𝑛2−𝑛3 − 𝑎−𝑛1−𝑛2−𝑛3+1 − 𝑎−𝑛1−𝑛2−𝑛3−1 

+ 𝑧−1{𝑎ℋ(𝑛1 + 1)ℋ(𝑛2 + 1)ℋ(𝑛3 + 1) − 𝑎−1ℋ(𝑛1 − 1)ℋ(𝑛2 − 1)ℋ(𝑛3 − 1)}  
 

 

Figure 31a: Lokal changes 

in a projection 

 

 

 

Figure 31b: Lokal changes 

in a graph 

 

 

 

Figure 32: One-bundle 

knots 

 

 

 

Figure 33: Three-bundle 

knots 

 

 



where  

ℋ(𝑚) ≡ 𝑧 ∑ 𝑎−2𝑘+1
𝑚

2⁄

𝑘=1    for 𝑚 even, 𝑚 ≥ 0 

and  ℋ(𝑚) ≡ −𝑧 ∑ 𝑎2𝑘−1
−𝑚

2⁄

𝑘=1  for 𝑚 even, 𝑚 < 0 

The general expression for type B is 

𝑃 = 𝑎−𝑚ℱ(𝑛1)ℱ(𝑛2) + ℱ(𝑛1 + 𝑛2)ℋ(𝑚)  

where the functions ℱ and ℋ are defined above. 

Examples for type A and B, with the graphs given in figure 34, are 

 

𝑃(𝐺1) = 𝑧2(𝑎−2 + 2𝑎−4 + 3𝑎−6 + 4𝑎−8 + 4𝑎−10 + 3𝑎−12 + 𝑎−14)  

+ (𝑎−8 + 𝑎−10 + 𝑎−12 − 𝑎−14 − 𝑎−16)  

𝑃(𝐺2) = −𝑧2(𝑎2 + 3 + 3𝑎−2 + 2𝑎−4 + 𝑎−6) + (𝑎4 + 𝑎2 − 1 − 𝑎−2 + 𝑎−8) 

𝑃(𝐺3) = −𝑧10𝑎8 + 𝑧8(𝑎10 − 9𝑎8 + 𝑎6) + 𝑧6(7𝑎10 − 30𝑎8 + 8𝑎6) 

+ 𝑧4(16𝑎10 − 47𝑎8 + 22𝑎6) + 𝑧2(14𝑎10 − 37𝑎8 + 24𝑎6) + (5𝑎10 − 18𝑎8 + 9𝑎6)  

𝑃(𝐺4) = 𝑧8𝑎−2 − 𝑧6(1 − 8𝑎−2 + 𝑎−4) − 𝑧4(6 − 23𝑎−2 + 6𝑎−4)  
−𝑧2(11 − 28𝑎−2 + 11𝑎−4) − (5 − 12𝑎−2 + 6𝑎−4)  
 

Alexander, Conway and Jones polynomials can be derived from 

the HOMFLY-polynomial with the following substitutions: 

 

Alexander ∆(𝑡): 𝑎 → 1;   𝑧 → 𝑡½ − 𝑡−½ 

 

Conway ∇(𝑧): 𝑎 → 1 

 

Jones 𝑉(𝑞): 𝑎 → 𝑞−1;   𝑧 → 𝑞½ − 𝑞−½ 

 

Note that although the HOMFLY-polynomial is the same for all projections of the same knot, 

different knots can have the same polynomial. I.e. there are knots that cannot be distinguished 

by the HOMFLY-polynomial. As an example, the two distinct knots with 13 crossings shown 

in figure 35, have the same HOMFLY-polynomial. 

 

17. Knot genus 
 

In topology different kind of surfaces are assigned genera [12].  E.g. a sphere has genus 0 and 

a torus has genus 1. Knots can also be assigned a genus [13] which is also an invariant of the 

knot. The genus of a knot is defined as the smallest genus of any of its projections. For 

alternating prime knots it is enough to calculate the genus for any minimal projection, but for 

non-alternating knots the procedure can be quite cumbersome since the number of projections 

that have to be considered can be very large (c.f. fig 30).  The only knot with genus 0 is the 

unknot. We are not giving the details here, but in fig. 36 all types of knots with 5 or fewer 

bundles are given and below general genera for those types are given. 

Note that the types 3A and 5D have genera which are independent of the number of crossings. 

Types of knots with 6 or 7 bundles, sharing this feature, are illustrated in fig. 37. Such types are 

those where all crossings are positive. 

 

 

 

Figure 34: Examples of three-bundle knots 

 

 

 

Figure 35: The knots 

13a3377 and 13a3380 

 

 



1: 𝑔 =  
𝑛−1

2
 

3A: 𝑔 =  1 

3B: 𝑔 =  
𝑛1+𝑛2

2
 

4: 𝑔 =  
𝑚+𝑛1+𝑛2+𝑛3−3

2
 

5A: 𝑔 =  
𝑚+𝑛4+1

2
 

5B: 𝑔 =  
𝑚1+𝑛1+𝑛2+𝑛3−1

2
 

5C: 𝑔 =  
𝑛1+𝑛2+𝑛3+1

2
 

5D: 𝑔 =  2 

5E: 𝑔 =  
𝑛1+𝑛2+𝑛3+𝑛4−2

2
 

 

 

18. Summary 
 

In this note we have demonstrated that any knot or link can be represented by a planar, 

connected graph with multiple edges, so called bundles. Furthermore any conceivable 

projection of a knot can be represented by such a graph. The total number of edges in a graph 

correspond to the number of crossings of the knot. In the same way as one projection of a 

specific knot can represent all projections of that knot, one of the graphs representing the knot 

can be chosen to represent all its variations. Since a graph conserves all the features of a specific 

knot, a table of knots can be condensed into a table of graphs. At the very least, planar connected 

graphs can be used as symbols for the knots. 

Appendix D contains all graphs with 6 or fewer nodes that correspond to all alternating prime 

knots with crossing number 11 or less. Appendix E contains all graphs with 5 or fewer nodes 

that correspond to alternating prime knots with crossing number 12. Appendix F contains all 

graphs with 6 nodes that correspond to alternating prime knots with crossing number 12, and 

finally appendix G contains all graphs with 7 nodes that correspond to alternating prime knots 

with crossing number 12 or less. Note that all graphs in those appendices represent an infinite 

number of alternating prime knots, since any odd bundle can take any odd number and any even 

bundle can take any even number. An additional appendix (H) is included with graphs 

corresponding to all prime links with crossing number 9 or less. 

 

 

 

 

 

 

Figure 36: Knot types with 5 or fewer bundles. 

 

 

 

Figure 37: Knot types with 6 or 7 bundles with fixed genera. 

 

 



References 
 

[1]  A fairly recent overview of knot theory is 

Adams, C C (2004), The Knot Book: An Elementary Introduction to the Mathematical 

Theory of Knots, American Mathematical Society, ISBN 0-8218-3678-1 
 

[2] On the web, Wikipedia has a lot of related articles, e.g. 

http://en.wikipedia.org/wiki/Knot_theory 

and http://en.wikipedia.org/wiki/Knot_(mathematics) 

where links lead to other related pages. 
 

 [3] Wolfram MathWorld has a lot of related articles, where a good starting point is 

Weisstein, Eric W. "Knot." From MathWorld--A Wolfram Web Resource.  

http://mathworld.wolfram.com/Knot.html 
 

[4]  See, for instance 

Weisstein, Eric W. "Planar Connected Graph." From MathWorld--A Wolfram Web 

Resource. http://mathworld.wolfram.com/PlanarConnectedGraph.html 
 

[5]  This is the Alexander-Briggs notation of knots commonly used for knots with 10 

crossings or less. See [1,2,3]. 
 

[6] http://www.knotplot.com/ 
 

[7] Owing to Reidemeister, Kurt (1926) Elementare Begründung der Knotentheorie, Abh. 

Math. Sem. Univ. Hamburg 5. See [1,2,3]. 
 

[8] All prime knots with 11 crossings or fewer can be found in the Knot Atlas. 

 http://katlas.org/wiki/Main_Page 

 All prime knots with 12 crossings or fewer can be found at Knotinfo 

 http://www.indiana.edu/~knotinfo/ 
 

[9] See, for instance 

 http://en.wikipedia.org/wiki/List_of_mathematical_knots_and_links 
 

[10] Kenneth A. Perko Jr, On the classification of knots. Proc. Amer. Math. Soc. 45 (1974), 

262—266. 

 See, for instance 

 https://en.wikipedia.org/wiki/Perko_pair 
 

[11] See, for instance 

 https://en.wikipedia.org/wiki/Knot_invariant 
 

[12] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., and Ocneanu, A. (1985). 
 Bulletin of the American Mathematical Society 12 (2): 239–246 

See, for instance 

 https://en.wikipedia.org/wiki/HOMFLY_polynomial 
 

[13] See, for instance 

 https://en.wikipedia.org/wiki/Genus_(mathematics) 
 

[14] See, for instance 

 https://en.wikipedia.org/wiki/Seifert_surface 

 

http://en.wikipedia.org/wiki/Knot_theory
http://en.wikipedia.org/wiki/Knot_(mathematics)
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Knot.html
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/PlanarConnectedGraph.html
http://www.knotplot.com/
http://katlas.org/wiki/Main_Page
http://www.indiana.edu/~knotinfo/
http://en.wikipedia.org/wiki/List_of_mathematical_knots_and_links
https://en.wikipedia.org/wiki/Perko_pair
https://en.wikipedia.org/wiki/Knot_invariant
https://en.wikipedia.org/wiki/HOMFLY_polynomial
https://en.wikipedia.org/wiki/Genus_(mathematics)
https://en.wikipedia.org/wiki/Seifert_surface

